5 found
Order:
  1.  21
    Classical Consequences of Continuous Choice Principles from Intuitionistic Analysis.François G. Dorais - 2014 - Notre Dame Journal of Formal Logic 55 (1):25-39.
  2.  23
    Comparing the strength of diagonally nonrecursive functions in the absence of induction.François G. Dorais, Jeffry L. Hirst & Paul Shafer - 2015 - Journal of Symbolic Logic 80 (4):1211-1235.
    We prove that the statement “there is aksuch that for everyfthere is ak-bounded diagonally nonrecursive function relative tof” does not imply weak König’s lemma over${\rm{RC}}{{\rm{A}}_0} + {\rm{B\Sigma }}_2^0$. This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that everyk-bounded diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the absence of${\rm{I\Sigma }}_2^0$.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  14
    When does every definable nonempty set have a definable element?François G. Dorais & Joel David Hamkins - 2019 - Mathematical Logic Quarterly 65 (4):407-411.
    The assertion that every definable set has a definable element is equivalent over to the principle, and indeed, we prove, so is the assertion merely that every Π2‐definable set has an ordinal‐definable element. Meanwhile, every model of has a forcing extension satisfying in which every Σ2‐definable set has an ordinal‐definable element. Similar results hold for and and other natural instances of.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  15
    On the Indecomposability of $\omega^{n}$.Jared R. Corduan & François G. Dorais - 2012 - Notre Dame Journal of Formal Logic 53 (3):373-395.
    We study the reverse mathematics of pigeonhole principles for finite powers of the ordinal $\omega$ . Four natural formulations are presented, and their relative strengths are compared. In the analysis of the pigeonhole principle for $\omega^{2}$ , we uncover two weak variants of Ramsey’s theorem for pairs.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  5.  39
    A variant of Mathias forcing that preserves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document}. [REVIEW]François G. Dorais - 2012 - Archive for Mathematical Logic 51 (7-8):751-780.
    We present and analyze \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_\sigma}$$\end{document}-Mathias forcing, which is similar but tamer than Mathias forcing. In particular, we show that this forcing preserves certain weak subsystems of second-order arithmetic such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WKL}_0 + \mathsf{I}\Sigma^0_2}$$\end{document}, whereas Mathias forcing does not. We also show that the needed reals for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation